
N95- 18998

Prepared by:

1994

NASMASEE SUMMER FACULTY FELLOWSHIP PROGRAM

MARSHALL SPACE FLIGHT CENTER

THE UNIVERSITY OF ALABAMA

ERROR CODING SIMULATIONS IN C

Viveca K. Noble

-" ::?:

Academic Rank" Instructor

Institution and

Department

MSFC Colleagues:

Tuskegee University

Department of Electrical Engineering

Bemd K. Seiler

Helen L. Thomas

NASA/MSFC:

Office:

Division:

Branch:

Astrionics Laboratory

Computers and Data Management

Flight Data Systems

XXXI

Introduction

When data is transmitted through a noisy channel, errors are produced within the data

rendering it indecipherable. Through the use of error control coding techniques, the bit error rate

can be reduced to any desired level without sacrificing the transmission data rate.[2]

The Astrionics Laboratory at Marshall Space Flight Center has decided to use a modular,

end-to-end telemetry data simulator to simulate the transmission of data from flight to ground and

various methods of error control. The simulator includes modules for random data generation,

data compression, Consultative Committee for Space Data Systems (CCSDS) transfer frame

formation, , error correction/detection, error generation and error statistics . The simulator

utilizes a concatenated coding scheme which includes CCSDS standard (255,223) Reed-Solomon

(RS) code over GF(28) with interleave depth of 5 as the outermost code, (7, 1/2) convolutional

code as an inner code and CCSDS recommended (n, n-16) cyclic redundancy check (CRC) code

as the innermost code, where n is the number of information bits plus 16 parity bits. The received

signal-to-noise for a desired bit error rate is greatly reduced through the use of forward error

correction techniques. Even greater coding gain is provided through the use of a concatenated

coding scheme.J4] Interleaving/deinterleaving is necessary to randomize burst errors which may

appear at the input of the RS decoder.[5] The burst correction capability length is increased in

proportion to the interleave depth. [2] The modular nature of the simulator allows for inclusion or

exclusion of modules as needed. This is a cost-effective means of determining optimal error

control schemes for a given error distribution.

System Description, Initial Development and Results

A block diagram illustrating the operation of the simulator is shown in Figure 1.

GeneratorRand°mData(1)_-_cl_o_mpression(2) I .[CCSDS]---_Formatter (3)

Error Statistics []Reed-Solomon

Generator (11)]4---_Decoder (10)

J__Reed-Solomon I .IConvoluaonal [.]CRCEneoder I
Eneoder (4) _ Eneoder (5) J'_ (6) I

/
___VimrbiDee°derL IcRCDee_r L]_°rGeneratorI

(9) _ (8) _ (7) I

Figure 1

In the initial development phase of the simulator, modules (1), (3), (6), (7), (8) and (11)

were developed in FORTRAN and the code simulating the CRC encoder and decoder shown in

Figures 3 and 4, respectively, were verified for up to 3 random errors. The CCSDS formatter

inserts a 32-bit sync marker (1ACFFC1Dhex) and stores the 48 bits immediately following the sync

marker as header infomation as shown in Figure 2. The following recommendations and/or tasks

resulted from this work: [4]

XXXI-1

• Convert simulation programs from FORTRAN to C

• Determine appropriate error distributions

• Develop Reed-Solomon and convolutional code simulator programs

• Add data compression modules

• Develop more refined and flexible error generator program

TRANSFER FRAME PRIMARY HEADER

ATT. FRAME MASTER VIRTUAL FRAME

SYNC IDENTIFICATION CHANNEL CHANNEL I DATA FIELD

MARK FRAME FRAME STATUS

COUNT COUNT

132 I 16 I 8 18 16

VER S/C VIRT OPER SEC. SYNC PACKET SEGMENT FIRST

ID CHAN CTRL HEADER PTAG ORDER LENGTH HEADER

ID FIELD FLAG FLAG ID POINTER

FLAG

2 10 3 1 1 1 1 2 11

t

Figure 2

•
Figure 3

Figure 4

Intermediate Development and Results

Code which was written during the initial development phase has been converted to C due

to the flexibility of the language. It was determined that random errors are represented by an

additive white Gaussian distribution and bursts are represented by a Markov Chain model.[1]

XXXI-2

The error generator that was developed initially was random in nature; in order to be "more

refined and flexible", the error generator should possess the ability to generate random, burst and
a combination of random and burst errors. Code written in C that simulates a RS encoder/decoder

[Rockliff, Simon- University of Adelaide] was obtained from an Internet users' group. The testing

of the code in various bit error rate environments is a continuous process due to the very purpose

of the simulator which is to determine optimal error control schemes for a given error distribution.

Encoding for the RS code mentioned above is in systematic form and the Berlekamp

iterative algorithm is used for decoding. The code may be modified to suit particular needs, that

is, one may specify m (any positive integer), n (the length of the codeword), k (the length of the

information string) and t (the number of errors that can be corrected). Also, the irreducible

polynomial must be specified to generate the Galois field, GF(2_). These polynomials may be

found in [2]. In its present form, the code does not handle erasures but may be modified to do so

by using the Berlekamp-Massey algorithm. In addition, it does not attempt to decode beyond the

BCH bound.[Rockliff, Simon - University of Adelaide]

Research regarding various error control coding and increases in coding gain revealed that

that increases in coding gain resulted in increases in decoding complexity. The degree of

decoding complexity far exceeded the degree to which the coding gain increased. Thus, hardware

implementation of such a decoder was not justified.[3]

Exploration of Software Tools

In addition to developing its own telemetry data simulator, the Astrionics Laboratory is

investigating the possibility of using Comdisco SPW TM in its efforts to determine optimal error

control schemes. SPW TM (Signal Processing Worksystems TM - a trademark of Comdisco) has

built-in libraries for data generation, noise generation, RS encoding and convolutional encoding.

One may create various coding schemes by arranging and rearranging these software modules.

During construction of the error control coding scheme, only block diagrams representing its

components may be seen. However, one may "step down" by levels and view the circuit diagram

of the encoders as well as the C code which was written to simulate each component. Since there

are library functions for the components, encoders may also be "constructed" from circuit

diagrams by simply drawing the circuit in the SPW TM environment. This software tool is

phenomenal.

Conclusion and Future Tasks

The C code for the Reed-Solomon has been verified. Research regarding algorithms for

burst error generation, data compression and convolutional encoding will continue. Once

obtained, code for these modules will be written and verified. Once all modules are complete,

they will be compared to their hardware equivalents, if application, to verify the correct operation

of the software. Investigation into the possibility of using SPW TM to verify the software will
continue.

XXXI-3

: ;:::, • ii¸::I/

References

[1] Berman, Ted and Dr. Jeffrey Freeman, Non-interleaved Reed-Solomon Coding Over A

Bursty Channel, Communications - Fusing Command, Control and Intelligence

Conference, Vol. 2, 1992, p. 580

[2] Lin, Shu, Daniel J. Costello, Jr., Error Control Coding: Fundamentals and Applications,

Prentice Hall, Inc., Englewood Cliffs, N.J., 1983, pp. 1, 28, 272

[3] Lin, Shu, Daniel J. Costello, Jr., Warner H. Miller, James C. Morakis, William B.

Jr., Bandwidth Efficient Coding for Satellite Communications, NAG 5-931 and
NAG 5-557

Poland,

[4] Noble, Viveca K., Error Coding Simulations, Final Report, Contract NASA, CR-193862,

August 1993, p.1

[5] Siveski, Z., Bozovic, R., Schilling, D. L., Concatenated Trellis�High-Rate Reed-Solomon

and Projection Codes, IEEE International Conference on Communications, Vol. 1, 1989,

p. 563

XXXI-4

